

The Generation of Referring Expressions: Where We've Been, How We Got Here, and Where We're Going

Robert Dale Robert.Dale@mq.edu.au

The Aims of This Talk

- To outline what referring expression generation is about
- To characterise the current state of the art and developments in the field
- To outline an agenda for future work in the area

Outline

- The Context: Natural Language Generation
- The Story So Far: Algorithm Development to Empiricism
- Challenges for the Future

The Context

- Natural Language Generation is concerned with generating linguistic material from some non-linguistic base
- Why is this important?
 - <u>Applications</u>:
 - any situation where it is not practical to construct the full range of required outputs ahead of time
 - -<u>Theory</u>:
 - understanding what drives choice-making in language

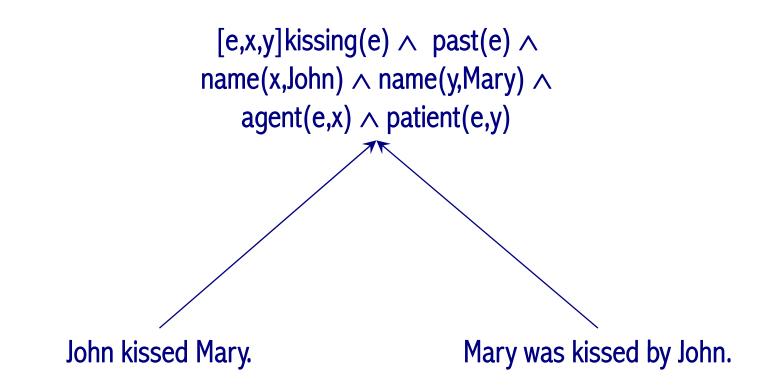
Natural Language Generation Applications

- Generating text from large data sets:
 - Weather reports, stock market reports
- Information personalisation:
 - Tailored web pages that take account of what you know
- Context-sensitive generation:
 - Dynamic utterance construction in dialog systems
- Multilingual generation:
 - Multiple languages from a common knowledge source

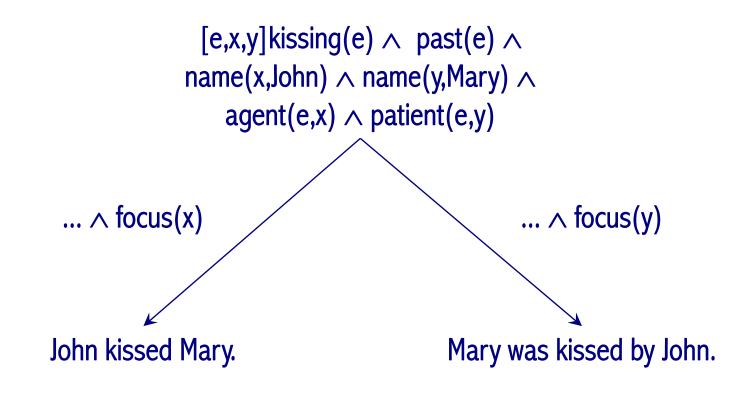
NL Understanding vs NL Generation

- The view from Natural Language Understanding:
 - Deriving meaning from text means throwing away or ignoring irrelevant detail
- The view from Natural Language Generation:
 - Very few, if any, surface variations are meaningless; we need to explain their function if we are to understand them properly

Mapping Between Representations: NLU



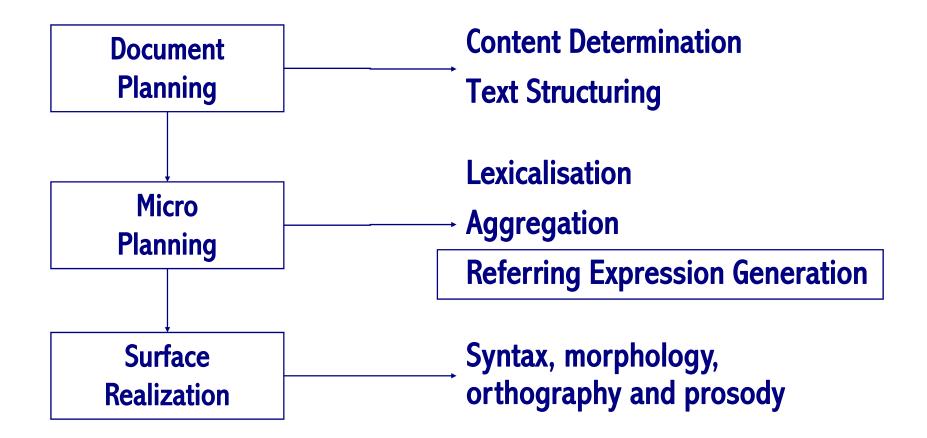
Mapping Between Representations: NLG



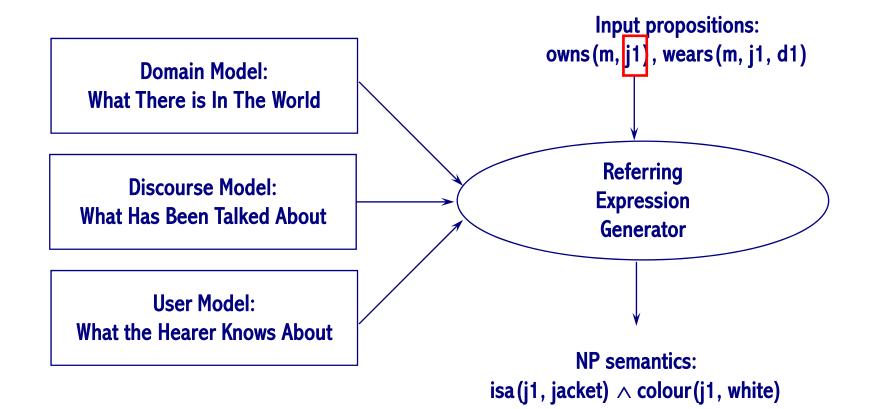
The NLGer's Position

- If we understand how and why texts are put together the way they are, we will be in a better position to take them apart
- Generation provides insights that should improve
 - Information extraction: working out what parts of a text are important
 - Text summarisation: working out how to replace incomplete references in extracted material
 - Machine translation: making choices that are appropriate to context

An Architecture for Generation



Referring Expression Generation



The Effect of Discourse Context on Reference

Example 1: $-owns(m, j1) \rightarrow Matt owns a white jacket.$ Different wears (m, j1, d) \rightarrow He wears it on Sundays. Example 2: $-owns(m, [j1+c1]) \rightarrow Matt owns a white jacket and a white coat.$ \rightarrow wears (m, j1, d) \rightarrow He wears the jacket on Sundays. Same Example 3: $-owns(m, [j1+j2]) \rightarrow Matt owns a white jacket and a blue jacket.$ wears (m, j1, d) \rightarrow He wears the white one on Sundays.

Outline

- The Context: Natural Language Generation
- The Story So Far: Algorithm Development to Empiricism
- Challenges for the Future

The Consensus Problem Statement

The goal:

Generate a distinguishing description

Given:

- an intended referent;
- a <u>knowledge base of entities</u> characterised by properties expressed as <u>attribute-value pairs</u>; and
- a <u>context</u> consisting of other entities that are salient;

Then:

choose a set of attribute-value pairs that uniquely identify the intended referent

Computing Distinguishing Descriptions

Three steps which are repeated until a successful description has been constructed:

Start with a null description.

- 1. Check whether the description constructed so far is successful in picking out the intended referent from the context set. If so, quit.
- 2. If it's not sufficient, choose a property that will contribute to the description.
- 3. Extend the description with this property, and reduce the context set accordingly. Go to Step 1.

Computing Distinguishing Descriptions: The Greedy Algorithm

Initial Conditions:

 $C_r = \langle all \ entities \rangle; P_r = \langle all \ properties \ true \ of \ r \rangle; \ L_r = \{ \}$

1. Check Success

if $|C_r| = 1$ then return L_r as a distinguishing description elseif $P_r = 0$ then return L_r as a non-dd else goto Step 2.

2. Choose Property

for each $p_i \in P_r$ do: $C_{r_i} \leftarrow C_r \cap \{x \mid p_i(x)\}$ Chosen property is p_j , where C_{r_j} is smallest set. goto Step 3.

3. Extend Description (wrt the chosen p_j)

$$L_r \leftarrow L_r \cup \{p_j\}; C_r \leftarrow C_{r_j}; P_r \leftarrow P_r - \{p_j\}; \text{goto Step 1}.$$
 [Dale 1987]

• Suppose x1 is the intended referent:

	Entity	Туре	Size	State
	x1	dog	small	mangy
	x2	dog	large	scurvy
	x3	cat	small	mangy

• Choose 'mangy' to rule out x2:

Entity	Туре	Size	State
x1	dog	small	mangy
x2	dog	large	scurvy
x3	cat	small	mangy

• Choose 'mangy' to rule out x2:

Entity	Туре	Size	State
x1	dog	small	mangy
x2	dog	large	scurvy
x3	cat	small	mangy

• Choose 'dog' to rule out x3:

Entity	Туре	Size	State
x1	dog	small	mangy
x2	dog	large	scurvy
x3	cat	small	mangy

• Choose 'dog' to rule out x3:

Entity	Туре	Size	State
x1	dog	small	mangy
x2	dog	large	scurvy
x3	cat	small	mangy

- The result is 'the mangy dog'
- 'The small dog' is also a distinguishing description.

Problem #1: Computational Complexity

• The algorithm does not guarantee to find a minimal distinguishing description [Reiter 1990]

Problem #2: No User Model

- The algorithm assumes that all properties are equal: it is only the relative discriminatory power, and nothing else, that causes a particular property to be selected.
- Some properties are more useful than other properties which have the same discriminatory power.

A talks to B on the tram:

- A: Which stop do I want for the cinema?
- **B:** You should take the stop before mine.

Problem #3: It's Not What People Do

- Context Set = b1, c1, c2
- Intended Referent = b1
- Domain Model:
 - bird (b1), white (b1)
 - cup(c1), black(c1)
 - cup(c2), white(c2)
- Typical description: 'the white bird'

A Response: The Incremental Algorithm

Initial Conditions:

- $C_r = \langle all \ entities \rangle; \ P = \langle preferred \ attributes \rangle; \ L_r = \{ \}$
- 1. Check Success
 - if $|C_r| = 1$ then return L_r as a distinguishing description
 - elseif P = 0 then return L_r as a non-dd
 - else goto Step 2.
- 2. Evaluate Next Property
 - get next $p_i \in P$ such that userknows $(p_i(r))$
 - $\quad \text{if } |\{x \in C_r \mid p_i(x)\}| < |C_r| \text{ then goto Step 3}$
 - else goto Step 2.
- 3. Extend Description (wrt the chosen p_i)
 - $L_r \leftarrow L_r \cup \{p_j\}; C_r \leftarrow C_{rj}; \text{ goto Step 1.}$

[Reiter and Dale 1992]

The Key Property of the Incremental Algorithm

- Principle distinction between:
 - the way choices are made (domain independent)
 - the choices available (domain dependent)

Extensions to the Basic Algorithms: Relations

- What happens if you need to mention another entity in order to identify the intended referent?
 - 'the dog next to the small cat'
- Extensions to incorporate relations:
 - constraint-based extension for relational properties [Dale and Haddock 1991]
 - referring to parts of hierarchically structured objects [Horacek 2006]

Extensions to the Basic Algorithms: Disjunction and Negation of Properties

- What happens if there are multiple entities instead of one?
 - 'the two dogs'
 - 'the dog and the cat'
- What happens if a distinguishing characteristic is that the intended referent <u>lacks</u> some property?
 - 'the dog that isn't a poodle'
- Extensions:
 - Sets [Stone 2000]
 - Negation and Disjunction [van Deemter 2002]:

More Algorithm Development: A Selection

- Integration of linguistic reference and pointing [Reithinger 1987]
- Generating quantifiers [Creaney 1996]
- Integration of constraint-based and incremental approaches [Horacek 1996]
- Incorporation of linguistic constraints to ensure expressibility [Horacek 1997]
- Simultaneous semantic and syntactic construction [Stone and Webber 1998]
- Incorporation of a treatment of salience [Krahmer and Theune 2002]
- Extension to sets [Gatt 2007]

Consolidation and Dissent: Unifying Frameworks

- Reconceptualisation as subgraph construction [Krahmer et al 2001, 2002]
- Reconceptualisation as parameterised search [Bohnet and Dale 2005]

Current Preoccupations in The Field: Empiricism and Evaluation

- How do our algorithms compare with what people do?
- How do our algorithms compare against each other?
- Not covered here: Anja Belz's work on Shared Task Evaluation Campaigns (see http://www.itri.brighton.ac.uk/research/reg08/)

What Do People Do?

- The HCRC Map Task Corpus [Varges 2005]
- The Macquarie Drawers Corpus [Viethen and Dale 2006]
- The TUNA Corpus [van Deemter et al 2006]
- The Macquarie Blocks Corpus [Viethen and Dale 2008]

Experiment #1: The Macquarie Drawers Corpus

The Drawers Domain [Viethen + Dale 2006]:

- a grid of 4×4 filing cabinet drawers
- each has a number in the range 1-16
- four drawers each are blue, yellow, pink and orange

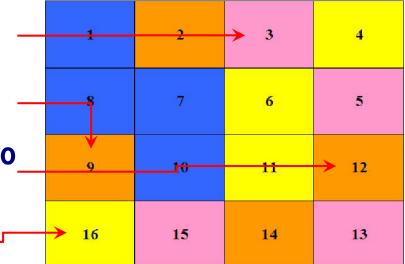
Task:

- Given the number of a drawer, describe it to an onlooker without mentioning any of the numbers
- 20 participants \rightarrow 140 descriptions (between 3 and 12 per drawer)

1	2	3	4
8	7	6	5
9	10	11	12
16	15	14	13

Some Human-generated Descriptions

- D3: the top drawer second from the right
- D9: the orange drawer on the left
- D12: the orange drawer between two pink ones
- D16: the bottom left drawer



Characteristics of the Data Set

- People don't always produce minimal descriptions:
 - Minimal Descriptions: 75.4% (89)
 - Redundant Descriptions: 24.6% (29)
- People rarely use relational descriptions:
 - One-place Predicates Only: 87.3% (103)
 - Relational Descriptions: 12.7% (15)

Redundant Descriptions

- D6: the yellow drawer in the third column from the left second from the top
- D1: the blue drawer in the top left corner
- D14: the orange drawer below the two yellow drawers

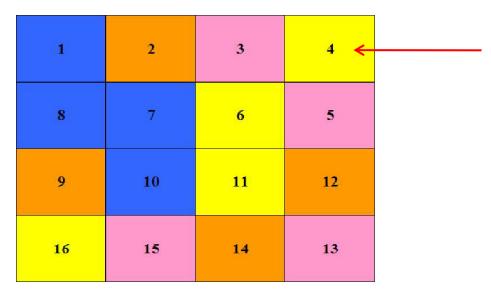
1	2	3	4
8	7	6	5
9	10	11	12
16	15	14	13

How Do Our Algorithms Fare?

Description type Algorithm	Overall	Minimal	Redundant	Relational
Greedy [Dale 1989]	79.6%	100%	31.0%	-
Incremental [Dale + Reiter 1995]	95.1%	100%	82.8%	-
Relational [Dale + Haddock 1991]	0%	0%	0%	0%

The Problem with Relations

- The Dale and Haddock algorithm prefers relations over other potential elements to include:
 - the drawer above the drawer above the drawer above the pink drawer



Experiment #2: The Macquarie Blocks Corpus

- Question: Do people use relations only when they are absolutely necessary?
- Materials: 20 different simple blocksworld scenes containing three objects, split into two trials; each subject sees 10 scenes
- Task: subject has to provide a distinguishing description in each scene for one of the objects; scenes constructed so that relations are never necessary
- Subjects: 74 participants recruited via the Internet

The Macquarie Blocks Corpus



Athens 2008-05-21

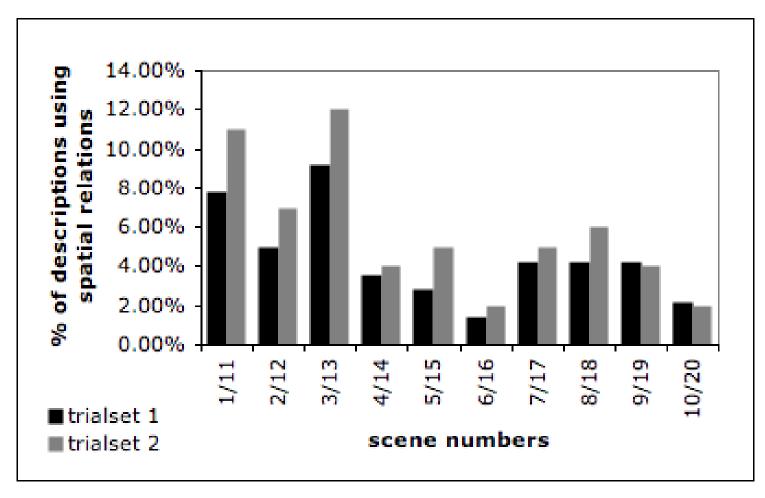
The Data

- 740 descriptions
- Data for 11 subjects removed:
 - 1 on participant's request
 - 1 because subject was colour blind
 - -9 because of apparent misunderstanding of the task
- Final set = 630 descriptions

Some Results

- Over a third (231 or 36.6%) of the descriptions use spatial relations
- 40 (63.5%) of the 63 participants used relations
- 23 (36.5%) of the participants never used relations
- 11 (over 25%) of the relation-using participants did so in all 10 referring expressions they delivered

Variation Across Duration of Trial



Interim Conclusions

- Spatial relations are used even when unnecessary
- There is a training effect: people become more confident in <u>not</u> using relations
- Landmark salience encourages use of relations

Consequences for Algorithm Development

- Need to incorporate scope for individual variation: perhaps a 'risky' versus 'cautious' parameter? [Carletta 1992]
- Need finer-grained account of characteristics of properties in the domain:
 - the ease with which a potential landmark can be distinguished, and its visual salience
 - the type of spatial relation between the target and a potential landmark
 - the ease with which the target can be described without the use of spatial relations

Outline

- The Context: Natural Language Generation
- The Story So Far: Algorithm Development to Empiricism Challenges for the Future

So Where Are We At Now?

- A number of base algorithms within the standard framework
- Some tentative explorations into other ways of thinking about the problem; extensions to accommodate sets, negation, disjunction, bridging reference, salience, pointing, linguistic constraints, quantifiers ... lots of pieces that haven't yet been glued together
- An evolving understanding of the role of evaluation and empirical data gathering

Challenges for the Future

- 1. Consolidation
- 2. Use in Applications
- 3. Broadening the Story: Other Uses of Reference

Challenge #1: Consolidation

- We have many piecemeal algorithms for different aspects of referring expression generation
- Nobody so far has glued them altogether

A Skeletal Algorithm

Given an intended referent x: begin if x is in focus then use a pronoun elseif x has been mentioned already then build a definite noun phrase else build an initial indefinite reference end

But What About Pronouns?

Given an intended referent x: begin if x is in focus then use a pronoun elseif x has been mentioned already then build a definite noun phrase else build an initial indefinite reference end

And What About Initial Reference?

Given an intended referent x: begin if x is in focus then use a pronoun elseif x has been mentioned already then build a definite noun phrase else build an initial indefinite reference end

Consolidation Challenges

- Covering the 'Identification Space'
 - Pronominal Reference
 - Initial Reference
- Scaling up syntactic and semantic coverage
- Integration of experimental findings

Challenge #2: Use in Applications

- Referring Expression Generation is still a theory-bound enterprise
- But there is real scope for practical applications:
 - Entity description in tailored instructions
 - Landmarks and directions in route descriptions
 - Entity references in automatically-generated summaries

Instructions

- 1. Remove the modem card from its packaging.
- 2. Align the card to the matching ISA or PCI slot.
- 3. Remove <u>the slot cover</u> to allow <u>the modem ports</u> to be accessible from <u>the outside of the computer</u>.
- 4. Carefully insert <u>the card</u> into <u>the slot</u> and push firmly into place. Secure <u>the card</u> with <u>a screw</u> in <u>the metal tab</u>.
- 5. Replace <u>the cover</u>, plug in <u>the power cord</u>, and turn on <u>the</u> <u>computer</u>.

Route Descriptions

- <u>A couple of kilometers</u> after <u>the M2 turn off</u> is <u>Herring Road</u>, at <u>the top of a hill</u>.
- You'll pass through <u>a built up suburb with lots of shops called</u> <u>St lves;</u> then you'll go under <u>the Pacific Highway</u>, at which point <u>the road</u> changes <u>its name</u> to <u>Ryde Road</u>.
- After going downhill and up again, <u>you</u>'ll start going down hill into <u>a valley through which the Lane Cover River runs; the</u> <u>road</u>'s called <u>Lane Cove Road</u> at <u>this point</u>.
- Turn left at <u>the first set of lights</u>, which will take <u>you</u> into <u>the</u> <u>university</u>.

Entity Reference in News Stories

<u>Morgan Stockbroking Ltd</u> said it was recommending <u>newly-listed</u> <u>equipment hire group Coates Hire Ltd</u> as a buy, reflecting good growth prospects. "<u>The company</u> is attractively priced based on 1997 fundamentals," <u>analyst John Clifford</u> said in a report. <u>Coates</u> listed this month after the sale of <u>Australian National Industries</u> <u>Ltd</u>'s 100 percent holding had a balance sheet "comfortably geared" at 46 percent and interest cover forecast to rise to eight times in the year ended June 30, 1997 from 6.7 times in 1995/96, <u>Clifford</u> said.

Challenge #3: The Discourse Functions of Reference

- There is more to reference than attribute selection for discrimination
- The <u>role</u> that a noun phrase plays in a discourse impacts on the attribute selection process
 - Maintaining focus
 - Setting the stage for subsequent reference
 - Contrasting one entity with another
 - Highlighting specific properties

Adding Discourse Purpose to Referring Expression Generation

- We already have theory of discourse structure that has been well-explored in NLG: Rhetorical Structure Theory
- Consider each element of a nominal expression as being licenced by some rhetorical function or purpose
 - Distinguishing from potential distractors is just one function
- The challenge: to catalog the inventory of rhetorical functions that surface in nominal expressions
- Likely to be domain- and genre-specific

Conclusions

- Referring Expression Generation is the most well-defined and developed subfield of NLG ... but we've only just got started
- There are real near-term practical applications that can benefit:
 - Instruction Manuals and Technical Support
 - Route Description
 - Entity Reference in Document Summarisation
- Natural language generation remains the best theoretical perspective for understanding how language really works